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The interaction between two microinhomogeneous half-spaces in a macrohomo-
geneous stress-strain state is considered, The perturbation method is used to
solve the problem. Finite expressions for the correlation functions and dispers-
ion of deformations are obtained in the first order approximation, Numerical
values of the coefficients characterizing the stress concentration at the bound-
ary of interaction between the half~spaces are derived, The dependence of these
coefficients on the ratio of elastic moduli of the media filling the half-spaces
is studied, A particular solution of this problem for the case when the elastic
moduli depend on two coordinates only, was given in [1],

1, Let the randomly inhomogeneous half-spaces 3 >0 and 1z, <0 in
which a macrohomogeneous stress-strain state prevails, interact along the plane ry =
0 . We write the displacements, deformations and stresses in the form [2]

ult) (x) = <uf® (x)> + v{P (x) (1.1
eu’ (x) = <€ (x)> + & (x)

o (x) = <ol (x> + ¥ (x)
(i,j=1,2,3k=1,2)

Here v;®, &;;®, 7;;%) denote the fluctuations in the values of the displacements,
deformations and stresses about their mean values  (u;®>, (e;;®>, (ag;;®)
describing the macroscopically homogeneous stress-strain state, The index & assum-

es the value of 1 for the half-space 23 > 0, and the value of 2 for x3; < 0.
The equations of equilibrium in the first order approximation have the form 3, 4]

s+ v = — o (e o 4 2o B%) (12
> =+ <>
Ky = ._k_ak_;_’f__ M (x) = (M (%)) + 0 (X)

1223 (X) = <Pk (X)> + ﬁk (X) (l) jymyn,p= 11 27 3; k= 1’2)

Here and henceforth the summation over the index k is not carmried out; <A;) and
{Mx> are the mean values of the Lamé parameters and oy, Py denote their fluct-
uations,

We shall assume that the half-spaces are under constant stresses "at infinity”.
Although in order to achieve a contact it is sufficient to assume that the stresses normal
to the plane of interaction between the half-spaces are not zero, here we adopt the
cubic compression which simplifies the computations somewhat, without distorting the
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Contact problem for microinhomogeneous half-spaces 1171

meaning of the problem.
The boundary conditions at the plane gz, == 0 have the form

Us® = ug®, 03, = 033®, 0,,® = 0 (k, n = 1, 2) (1.3)

Let us represent the fluctuations in the elastic moduli by the following Fourier integrals
(fx (®) and gy (®) are generahzed random functions) ;

(o B} = SSS {fi (@) gx (o) exp (i0x) do 1.4
x = {23 xz;“;;}, o = {0 0 o3} (k=1,2)
We seek a solution of (1, 2) in the form
v = v(pa,.), . v(gen)g G§=1,2,3 k=12 (1.5)
where v((’&r),- denote the particular solutions of (1, 2) and vfg)en)j are the general

solutions of the corresponding homogeneous systems of equations. Let us put
= * (1.6)
Vihry 5 = S S S v () exp (iox) do

Substituting (1. 6) into (1, 2) we obtain for y;%), asin[2], the following expressions;

(C(k)> (1‘ 7)

(k) __

V= l[ P> (1 %) mz rf (@) +
02 <o)y op — 2,05 CeX)y 0 0

2 (4 + %) 02 <ely)> O — %y ; 200 (@)
W (A + %) @
(02=(.0m(0m (jrm7 n, p,q= 1y2,3;k==1,2)
To find the general solutions of the homogeneous systems corresponding to (1. 2),

we use the Trefftz's representation (5] which gives a general solution of the equations
of the theory of elasticity in terms of harmonic functions

K &
U%gln» = %, — Gk TsPin, jm 18
. > + <y (1.8)
q)gn)nn = 0’ Ay = T a
(j,m,n=1,2,3;k:1,2)
Let us define @;® as follows;
J k . 1.9
(k) = SS A (0,) exp Qudo,, Qi = i0,x, + (1.9
(— 1)"“’*‘”3’ Xy = {T1; o}, @ = {0 02}, 0,%= 00,
(k,n =1, 2)
Using (1. 8) we obtain
(1. 10)

ofgoms = §§ = 10, 4P + 0,250,091 exp Qudor,
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U(gen)s = ("‘ 1.)k SS [(D A( L ia};zgm*g‘%)] exp deﬁ)*
QX = oAl — (— O io AP (i, k, m =1,2)

A;® (j =1, 2,3) appearing in (1,10) and containing integrals in s can be
found from the boundary conditions (1. 3); since the expressions for A4;*! are bulky,
they are not given here,

Substituting (1. 6) and (1. 10) into (1.5), we obtain the expressions for the displace-
ments in the first order approximation

o = SSS ()" exp (i0x) + [(— 1)F 0, B + 01230;05 Jexp Qudo  (1.11)
0 {15 (40 exp (i0m) 1 (— ) [0, BP — 103240,0] exp Qudo

0P = 0,BY — (—1)io, BH, AY = SBL"’dma U, k,m=1,2;

n=1,2,3)
Using the Cauchy formulas, the Hooke's law
= 2 (Cuxd & 4 Brcer,®D) + (> e 4 ox < Cema)) Bus

and the relations (1, 11), we can obtain the expressions for the deformation and stress
perturbations, In what follows, we shall limit ourselves to the deformations,

The expressions describing the fluctuations in deformations have the following
form;

o0

e = 4 ({5 (rPon + vP0m) exp (10x) -+ (1.12)

[(— 1) 0y (@B + 0nBL") + 20x0m0,2Q 5] exp Qu} doo
o3 = - {0 6y oPamoxpom) - [~ 1)y (10, B+

i0mBY) 4 axom (1+ (— 1) 20,23) 0% ] exp Q) do
el — ggg (¥ 05 0xp (i0%) + (— ) [(—1)" B —

iax (1+ (—1)f0,2:) Q5] exp Q} do

0 = tf) = i S§S [v5 0, exp (i0x) + (— ¥ (1 — a) X

0

0,08 exp Uldo (k, myn=1,2; p=1, 2, 3)
The formulas for the displacements and deformations in the half-spaces z3 > 0 and
23 0 contain Fourier transforms fi (@) and gy (@) of the functions «; and



Contact problem for microinhomogeneous half-spaces 1178

Bx (£ =1, 2), and this would seem to imply that in order to determine the de-
formations in e, g, the half-space z3 >> 0, the functions must be defined over the
whole space, It can be shown that this is not true, i.e, that the values A, and p,
assumed for z3 <70 and Ay, M2 for Z3 > 0, , do not affect the values of
the deformations for x4 > 0.

We shall carry out all computations for the case sg’ . The computations for
the remaining deformations and for the stresses are identical,
Let us write the expressions for f, and g in the form
i oo
e} =37 S {F: G} exp (— imguy) du,
o (3.

F = F (05; 035 u3), G= G (05 0, ug)

Using these expressions we can reduce the Fourier transformation of e%’ in =z and
z, to the form

P13 (Ct)l; g} ms) m= S RIS (0)1; g Ty us) dus (l‘ 13)
1 e
Ry = T Ty (0y; 03} uy) Sn{- ©3 exp (iwszg) +
8y (1 ) <ppd .
[ e o~ 100 %

exp (— m,a:a)} _3{!3_%?_}‘_‘3)__ dwg
18
D =Gy @ T g Palt + %) i + % (4 + %) <ugd]

Since the functions f, gx (k= 1, 2) are independent, only f,==0 appearsin
(L13)and fy= g; = go,= 0. Direct computation of the integral in (1, 13) yields
e{ = 0 and this shows that the deformations in the half-space 23>0 are indep-
endent of the values assumed by the moduli of elasticity at 23 <0 (the computat-
ions forthe case g;=£0, f/, = fy= g,= 0 are analogous and are not given here),
Next we shall show that the deformations in 23 > 0 are independent of the val-
ues assumed by the moduli A, and M in 2z, >0. Letusput f360,fi =g =
g2= 0, Then

o0
i Y . exp {(— iwguy)
Ry = o Tys S (03 + {0y} 6XPp (— @423) ___",')?“'2_‘ dwg == 0
s )

which proves the above assertion,

2, Let us inspect the deformed state of the half-space %52>0  in more detail.
All arguments which follow also hold for the half-space x5 <{ 0.

Let the random fields o, and P, be statistically homogeneous and isotropic,
related to each other in a statistically homogeneous and isotropic manner, and have
the known correlation functions
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Ky () =<5 (02, (x+8)> (¥, 2 =, f)
Here and henceforth the bar denotes a complex conjugate quantity,

We make the same assumptions about ¢, and f, as about o, and f,, and
we also assume that

(CANY)

12> =0 (y, 2 = «, B) (2.2)

and this leads to the following expressions for the components of the correlational de~
formation tensor:

Kpget (%, &) = (2 (%) e® (x -+ E)) (2.3)

From (2, 3), (1.12), (2.1) and (2, 2) we see that the deformation field is stationary
in the directions of the z; and xz, axes, and nonstationary in the direction of the
zs -axis, Without quoting the bulky expressions for K4 for all values of p,
g, s and ¢, we shall consider the correlation functions of the deformation g,V
and volume expansion 0,.
The behavior of the correlation functions and the dispersion of deformations at the

boundary of interaction between the half-space is of particular interest. From (1.12)
we have, for 23 =0

8?2} == ”%“ SSS [v103 + V201 — @, (@3B, + 0,B,)] exp (iv, 7, )do (2.4)

——0

0 =1 SSS [Ym®Om - (@1 — 1) (0 By + i®,Bs)] exp (i0,7;) do
(m=1,23n=1,2)

Using (2.4), (2.2) and (2, 3), we obtain the correlation functions for &,,®) and 0,

2.8
K 20) = ([ {0 2252 5, o) 4+ b 2202 000 i, gy 4 9

@-&

(4 50 xS (0) | — 2 (1 + 22) buby (d + 2 5 o) e
Sy ((o)} exp (io,r,) do

Ko@) = {0 [ (e + s (35 + 25

O

diths? 25 8, (m)] exp (i0,24) do

i
b= 4o [+ (t+-E2)], b= bce 3
2 by = PR
CTxCFtmD ' 7 A+ m) e

R A
cp = (dk — 2hy —mmsT) y o dp = (—1)Fe®) (1_ 1+ 7‘:) By )

(Z;‘: ) Sy (o) +

by =
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By = Ce®) ﬁf-;‘; dy = 8 (4 + %s) by

Sp = 9 .8,® 4 12 8;,® + 4 S5, £ = Giki
Cey M) = <e®) &y (k =1, 2)

where §;;%) denote the spectral densities of the fields ®x and .
Passing in (2,5) to spherical coordinates and integrating over the angles, we obtain
(S m/n is a Bessel function)

K Ba) = - S (BEH:S1 (@) + b2 [(Ha — H2) b5 (0) + (2.6
(1 + %)® Ck’Sk ()] — 2(1 + %o) bsby [diH 5 + 2hy (Hy —
H)1 S, (@) o*da

Ko(Ey) = 2n2§{h12 [ w43 (ds + ) 5 (— V9 S1(0) +

diths® 5z V452 @)} s () Ty (1) w¥dd

Hy = e [y () Toagy (1) - 570y () Toag, () =+ 107y, (1) Ty () —
(Fora (1) gy (1) + 570, (1) Ty, (m) -+ 10Ty, () Ty, (1) c08 ]
Hy = - [y (0) Ty (1) 4 37,5, (1) T () —

(J ¥/s ("l) 'f‘fs (71) + 3"‘1’: (ﬂ) J‘/a (T})) cos P]
Hs = Jy,() Jy, () — o, (n) T3, (m) cOS
5
n=3t, p—arctggh, Vet
Cm'=dm2H3—4dh (Hs“““ 2)+4 hmz(Hg'—z 32+H1)

(k, m = 1, 2, in m do not summarize)
Setting in (2.6) &, = 0, we obtain the expressions for dispersions

Digps = —3%-§ {80,281 (0) + bs® [2bx%S (0) + (1 + %a)’ex Sk (@)1 — (2.7
& (1 + %s) buba (5 + 2hs) S (@)} @¥do
Do = 2n°§{h1 [ + 5 s (da+ o) | S1 0 +
—%-da:hg’Sz (m)} odo (k=1,2)
3. Let us consider some limiting cases,

1°. The half-spaces are filled with the same medium, f.e. A =13, and
§; == ug. In this case the expressions (2,7) will become

4
Dysss = 45 12D%},,, Do =2r2D%pl
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o
L ey
D"=§ ©2S (o) do, T=TTFway
Here v and vy are the variability coefficients, Computing these coefficients
yields the following results: o3, = 0,10, v4? = 1.96 (the Poisson's ratio v = 0.25),
and their values for the whole space [4] are i},, = 0.093, v,? = 1.39.

2°, The half-space 230 is homogeneous, Assuming that the mean values
of the elastic moduli for z; > 0 are equal to the values of the elastic moduli of the
half-space  z, 0, we obtain o}, , = 0.25, p? = 2.38.

3°. The half-space =z, {0 is perfectly rigid, In this case the dispersion of the
volume expansion at the boundary z,= 0 coincides with the dispersiog of the vol-
ume expansion over the whole space, and the variability coefficient Vigyp = 0.116.

4°, The half-space 232> 0 is loaded along the plane z, = 0 by normal stresses,
We have o}, = 0.198, v = 2.55.

Using (1, 12) and the Hooke's law we can obtain the expressions for the stress fluct-
uations and hence the formulas for the components of the correlation and stress disper-
sion tensors, Without quoting these formulas in full, we shall give just the values of
the variability coefficient for the stresses 0l (or 6,™) and 6, atthe
boundary of interaction between the half-spaces. For the cases 1° — 4° we have, re-
spectively, o3, = 1}, = 0.431, 0.101, 0.107, 0.116; 23, = 0.1, 0.25, 0.116,

0.13, and wehave v% = wvg? = 0.105, v}, , = 0.093 in the whole space [4].

Comparison of the values of the variability coefficients obtained here with the
corresponding values given in [6], is of interest, Let us compare the ratio of the
variability coefficients for the stresses 0, (0%™), 0™ in the half-space to the
corresponding coefficients in the whole space (the values of w from [6] are given in
brackets) wyn; = 1.104 (1.099), wyg, = 2.123 (2.109). We see that the correspond-
ing values differ from each other by fractions of one percent, It follows that we ob-
serve a considerable concentration of the deformations (stresses) at the boundary bet-
ween the half-spaces, which should be allowed for in practical computations,
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