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The interaction between two microinhomogeneous half-spaces in a macrohomo- 
geneous stress-strain state is considered. The perturbation method is used to 

solve the problem. Finite expressions for the correlation functions and dispers- 

ion of deformations are obtained in the first order approximation. Numerical 

values of the coefficients characterizing the stress concentration at the bound- 
ary of interaction between the half-spaces are derived. The dependence of these 

coefficients on the ratio of elastic moduli of the media filling the half-spaces 
is studied. A particular solution of this problem for the case when the elastic 
moduli depend on two coordinates only, was given in [l]. 

1. Let the randomly inhomogeneous half-spaces x3 > 0 and x,<O in 
which a macrohomogeneous stress-strain state prevails, interact along the plane 5s = 

0 . We write the displacements, deformations and stresses in the form [Z] 

U$k) (x) = (U$k) (x)) + ZIlk) (x) (1.1) 

,\rj) (x) = (eC) (x)) + i?$) (x) 

c$) (x) = (o:‘f’ (x)) + z’k’ (x) 

(i;j = 1, 2,'3; k = I,';, 

Here Vi(k), Eijtk), ‘Cij(‘) denote the fluctuations in the values of the displacements, 

deformations and stresses about their mean values (Ui’k’)7 (eij(')), (oij(k)) 

describing the macroscopically homogeneous stress-strain state. The index k assum- 

es the value of 1 for the half-space xs > 0 , and the value of 2 for x9 < 0. 
The equations of equilibrium in the first order approximation have the form [3,4] 

xk~~~~j + vjf',, = - & ((45 atki) + 2 (eji') Sl"L> 

xk = 

++)+(pk) 

'+'k) ' 
hk(X)=(hk(X))fak(X) 

(1.2) 

pk(X) = <pk(x)> + pk(X) (i, j,%'bp = 1,273; k = 112) 

Here and henceforth the summation over the index k is not carried out; (kk) and 

(pk) are the mean values of the Lam6 parameters and ak, pk denote their fluct- 

uations. 
We shall assume that the half-spaces are under constant stresses “at infinity”. 

Although in order to achieve a contact it is sufficient to assume that the stresses normal 
to the plane of interaction between the half-spaces are not zero, here we adopt the 
cubic compression which simplifies the computations somewhat, without distorting the 
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meaning of the problem. 
The boundary conditions at the plane zs = 0 have the form 

us(l) = u9t2), ass(l) = o&2), o,stk) = 0 (k, n = 1, 2) (1.3) 

Let us represent the fluctuations in the elastic moduli by the following Fourier integrals 

(fk lw) and gk (0) are generalized random functions) : 

@k; pk) = @j {fk @); gk to)) exp fro@ &I (1.4) 

w={ol; 0,; oa} (k==l,2) 

We seek a solution of (1,Z) in the form 

cj@) = Z&r)j + Uf&j (f = 1, 2, 3; k = 1, 2) (1. fd 

where v$,& denote the particular solutions of (1.2) and U{:)en)j are the general 

solutions of the corresponding homogeneous systems of equations. Let us put 
co 

r_#O 
(par) .i = sss 

ytk) (0) exp (iox) do (1.6) 
3 

--m 

Substituting (1.6) into (1.2) we obtain for yj’L’, as in [2], the following expressions: 

y,Sk) _ i 
<eCk)> 

(l”k> ;;+ xk) w2 %k(O) + (1.7) 

2 
(i f xk) & <ef;z) oh - skmj ce$j> @pa 

Qk> @ + %k) O4 
8k (@) 

1 
ma = o,w, (1, m, n, p, q = 1, 2, 3; k = 1, 2) 

To find the general sol&ions of the homogeneous systems corresponding to (1.2), 
we use the Trefftz’s representation [S] which gives a general solution of the equations 
of the theory of elasticity in terms of harmonic functions 

$)en)j = Cpj, 3 - 
tkf 

ak%&; jm 
(1.8) 

v$‘, = 0, ak = 
CL,) + (pk) 

* a,> + 3 <p,> 

(j, m, n = 1, 2, 3; k = 1, 2) 

Let us define qj’k’ as fOJ.lows: 

cp$k) = jj A:“‘(o*) exp f&&r*, !& = i@,x, + 
-cc 

(-- Qk~*% x* = @r; x21, co* = {q; o*}, a*2 = o,o, 

(k, n = 1, 2) 

Using (1.8) we obtain 

00 

t&n) j = 
ss I(- i)‘@*A$“’ + U@%WjQ$‘] f3Xp SlkdO* 
---a, 

(1.9) 

(1; 10) 
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&n,s = (- - iaks:~o,Q$?] exp Q&o, 

(W 
QA = o&If? l)k ~(I&A~~) (j, k, m = 1,2) 

A,(W (j = 1, 2, 3) appearing in (1.10) and containing integrals in WS can be 
found frbm the boundary conditions (1.3); since the expressions for Ajckf are bulky, 
they are not given here. 

Subs~~~g (1.6) and (1. IO> into (1. S), we obtain the expressions for the displace- 
ments in the first order approximation 

cv 

00 = 
v3 sss 

{y$k’6’Xp (iOX) + (- i)k [Q,&k) - iUk”30*Q(Bk)] eXp !&do 

Qk = q,.,B$ - (-- ~)~iw,&~), A:' = f Bik'do3 (I, k, m = 1,2; 

n=l, 2, 3) 

Using the Cauchy formulas, the Hooke’s law 

xij(k) = 2 ((pk) Eij(k’ + @k(eij’k’)) + ((hk) 8% i_ ok < {eLkA>) 6ij 

and the relations (1. 11), we can obtain the expressions for the deformation and stress 

perturbations. In what follows, we shall limit ourselves to the deformations. 

The expressions describing the fluctuations in deformations have the following 

form: 
m 

$0 _ i 
mn - T-- L C(&%h + Y Lk’~,> exp (iox) + 

--cm 

(1.12) 

I(- ifk CO* (~3~’ + ~~3~‘) + i&&,#&Q~‘] eXp 92,) dw 
n? 

fkf 1 
Gn3 = -y- 

~SS 
{~(~~~~~ y~k’~~~exp(~~x~~ f(-I)‘w,((- ~)k#~3~)~ 

i~,tr~~))-; akw, (I+ (- 1fk2w&) Q$)] exp t-&} do 

(k) _ l ’ ’ 
E33 - 

sss 
{iybk’03 exp (iox) + (- I)k [(- I)kBik’ - 

iak (;;: (- l)kO*Xs) Q(Bk)] exp !&} do 
03 

el; = p$fj = i 
sss 

f&?mp exp (iax) + (- $)k (1 - a&) x 

~*Q~)~~~~~]d~ (k, m, n = 1, 2; p = 1, 2, 3) 

The formulas for the displacements and deformations in the half-spaces 2s > 0 and 
s,,< 0 contain Fourier transforms fk (0) and gl, (0) of the functions ok and 



gk (k = 1, 3, and this would seem to imply that in order to determine the de- 
formations in e. g. the half-space zs > 0, the functions must be defined over the 
whole space, It can be shown that firis is not true, i.e. that the values h, and ~1~ 
assumed for 5s < 0 and ha, Fls for x8 > 0, , do not affect the values of 
the deformations for xs > 0. 

We shall carry out all computa~o~ for the case E$ . The computa~ons for 
the remaining deformations and for the stresses are identical. 

Let us write the expressions for fi and g, in the form 
m 

{F; G} exp (- fwgq &is 

F = 8’ @I; %; d, G = G (a,; w,; z+J 

Using these expressions we can reduce the Fourier transformation of e$) in x1 and 
za to the form 

(1.13) 

Since the functions fk, gk (k = 1,2) are independent, only fr =+ 0 appears in 
(1.13) and fst = g, = g, = 0 , Direct computa~on of the integral in (1.13) yields 

E::) = 0 and this shows that the deformations in the half-space zs > 0 are indep- 
endent of me values assumed by the moduli of elasticity at x8 < 0 (the computat- 

ions for the case g, $2 0, fl = fa = g, = 0 are analogous and are not given here). 
Next we shall show that the deformations in zs > 0 are independent of the val- 

ues assumed by the moduli k, and P.B in xs > 0. Let us put fa + 0, fi = & = 

which proves the above assertion. 

2. Let us inspect the deformed state of the half-space xs > 0 in more detail. 

All arguments which follow also hold for the half-space x3 < 0. 
Let the random fields ctI and & be statistically homogeneous and isotropic, 

related to each other in a statistically homogeneous and isotropic manner, and have 
the known correlation functions 
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K/z (E) = (Yl (x> Zl (x + 8) (Y, z = a7 B) (2.1) 
and the denotes complex quantity. 

make same about and as CC~ &, 
we assume 

@,z,) 0 2 a9 (2.2) 

this to following for components the de- 
tensor: 

(2.3), X2), and we that deformation is 
in directions the and axes, nonstationary the of 

xs Without the expressions k&r all of 
Q, and r , we 

i@jly ,o, + (al- 1) &A -!- W@3)1 exp (~~*x3) t-2~ 

(m = ;y2, 3; n = 1, 2) 

Using (2.4), (2.2) and (2,3), we obtain the correlation functions for &rs(‘) and 8r 

(j32h22 0*4 
cd 32 (41 exp(%s,)do 

bl -f 4(e(19[l+~2(l+3], ba=4<d2))s 

2 
b3= (Z$-X,)Pf%)D ’ 

b 
(e(l)) 

* = o+ Xl) <PI) 

<J”,l 
ek = 

f 

dk - 2hkf$ , dk = (-*)’ cd”)> ‘- (1+ xk)(pk) 
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hk = <e(k)) -A.- f 
1 + xk 

d3 = 8 (I + x3) b3 

Sk = 9 &lQ) + 12 s#) + 4 &atk), $,*= = &?$ 
= (etk)) 6,j (k = 1, 2) 

where Siffkf denote the spectral densities of the fields C% and pk. 
Passing in (2.5) to spherical coordinates and integrating over the angles, we obtain 

(Jrnln is a Bessel function) 

a&,*) = 2n”5{~,‘[~+e(d,+~)~(-v2)S1(0)+ 
0 

rl = q=, qJ=arctg+, v=+$+& 
Cm ’ = dm2H, - 4 d,h, (H, - H2) + 4 hm2 WZi - 2 N, + HJ 

(k, m = 1, 2, in m do not summarize) 
Setting in (2.6) E* = 0, we obtain the expressions for dispersions 

D 1418 z r {@a*& (0) + b2 [2bk2Sk (0) + (1 + X‘&k‘Sk t@)l - = 30 

4 (1+ xz; b&a (5h -I- 2hl) SI (@I @2cJa 

(2.7) 

De= 24{h2[& + ; -tb(rk+ &)I s1w+ 
0 

+-&2h22Ss (co)} 02dw (k = 1, 2) 

3, Let us consider some limiting cases. 

1’. The half-spaces are filled with the same medium, i.e. hI = As and 

Pl = zr,- In this case the expressions (2.7) will become 
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p = S 0~5 (to) do, 
n <e> 

r = (1 + “1 <I”*> 
0 

Here %1e and vu are the variability coefficients. Computing these coefficients 
yields the following results: V& = 0,10, vas = 1.96 (the Poisson’s ratio Y = 0.25), 
and their values for the whole space [4] are u&s = 0.093, $2 = 1.3% 

2”. The half-space zs < 0 is homogeneous. Assuming that the mean values 
of the elastic moduli for q > 0 are equal to the values of the elastic moduii of the 
half-space q < 0, we obtain %I2 = 0.25, vaa = 2.38. 

3”. The half-space 2s < 0 is perfectly rigid. In this case the dispersion of the 
volume expansion at the boundary zs = 0 coincides with the dispersio; of the vol- 
ume expansion over the whole space, and the variability coefficient v121z = 0.116. 

4”. The half-space 2, > 0 is loaded along the plane 2, = 0 by normal stresses. 
We have &,,a = 0,198, r+,s = 2.55. 

Using (1.12) and the Hooke’s law we can obtain the expressions for the stress fluct- 
uations and hence the formulas for the components of the correlation and stress disper- 
sion tensors. Without quoting these formulas in full, we shall give just the values of 

the variabi~ty coefficient for the stresses uIIu) (or usa( and $11(l) at the 
boundary of interaction between the half-spaces, For the cases I” - 4’ we have, re- 

spectively, vtal = vE222 = 0.431, 0.101, 0.107, 0.116; zJ&= 0.1, 0.25, 0.116, 
0.13 , and wehave r&r1 = ua2 = 0.105, r&r2 = 0.093 in the whole space [4]. 

Comparison of the values of the variability coefficients obtained here with the 

corr~pond~g values given in [6], is of interest. Let us compare the ratio of the 

variability coefficients for the stresses un(l) &s(l)), ala(l) in the half-spce to the 
corresponding coefficients in the whole space (the values of w from (63 ace given in 

brackets) ~1111 = I.104 (1.099), w121a = 2.123 (2.109). We see that the correspond- 

ing value$ differ from eachother by fractions of one percent. It follows that we ob- 
serve a considerable concentration of the deformations (stresses) at the boundary bet- 
ween the half-spaces, which should be allowed for in practical computations. 
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